Working Paper No. One

The Artificial Knowledge Manager Standard: A "Strawman"
By
Joseph M. Firestone, Ph.D.
Executive Information Systems, Inc.

http://www.dkms.com

eisai@home.com

Revised March 16, 2000
Prepared for First KMC/AIIM
KM ANSI/ISO Standards Committee Meeting
January 29, 1999

© 1999=2000 Executive Information Systems, Inc.

This paper is a working paper, or "straw man," circulated for purposes of
collaboration within the Knowledge Management Consortium
International's (KMCI) Artificial Knowledge Management Systems
Committee (AKMSC). It is intended that this paper be used by the
Committee, along with contributions of other committee members to arrive
at a collaborative Standard Recommended Practice on Artificial
Knowledge Base Management Systems, a product of the Committee and
the KMCI.

Introduction

An Enterprise Knowledge Management Model (EKM) is a hierarchical
network of rules that enables an agent to explain, anticipate and predict
events and interaction patterns: (a) in the enterprise's Knowledge (Kn)
Processes, or Knowledge Management (KM) Processes; and (b) in the
enterprise's environment. An EKM model represents or models the
Natural Knowledge Management System (NKMS) [1] of an enterprise.

An Enterprise NKMS is an on-going, conceptually distinct unit
composed of enterprise organizational and human components and
their persistent interactions, both having properties, whose interaction
properties are not determined by design, but instead emerge from the
dynamics of the enterprise interaction process itself. An Enterprise
NKMS includes mechanical and electrical organizational components
produced by it, such as computers and computer networks, as well as
human and organizational agents.

An enterprise Artificial Knowledge Management System (AKMS) is an
enterprise wide conceptually distinct integrated component produced by
its NKMS:

= whose components are computers, software,
networks, electronic components, etc.,

= whose components and basic interaction properties
are determined by design, and

= whose overall purpose is to support the Kn and KM
processes of the NKMS.

A key aspect in defining the AKMS is that both its components and
basic interaction properties must be designed. The idea of being fully
designed vs. being partly designed, or not-designed is essential in
distinguishing the artificial from the natural. Thus, in an enterprise or
any other organization, even though we may try to design its processes,
our capacity to design is limited by the fact that it is a Complex Adaptive
System (cas) [2] [3] [4]. If we understand a cas, we expect to be able to
correctly design its components and certain aspects of its processes,
but in the end we expect its behavior to be emergent and to not be a
precise consequence of our design. Once the cas starts operating, it is
self-organizing and controls its own behavior. At best, we can only
interact with it and influence it.

On the other hand, with an AKMS, we design both its components and
their basic interactions. The connection between the design and the
final result is determinate and not emergent. When we interact with the
AKMS, we can precisely predict what its response will be.

The AKMS is designed to manage the integration of computer
hardware, software, and networking objects/components into a
functioning whole, supporting enterprise knowledge production,
acquisition, and transmission processes. The AKMS, in other words,
supports producing, acquiring, and communicating the enterprise's
knowledge base. The enterprise's knowledge base, in turn, is used by
its agents to perform Kn, KM, and business processes. [5] This Working

2

Paper will present a conceptual model of the AKMS and of its key
integrative component, the Artificial Knowledge Manager (AKM) [6]. It is
intended as a "straw man" to help the Artificial Knowledge Management
Systems Committee begin work and focus its deliberation on an AKM
standard.

The AKMS Architecture

Two ways to look at the AKMS are in terms of its use cases and its
architecture. After a few words of background on the relation of use
cases to architecture, let's proceed to examine AKMS architecture and
then its use cases.

In the Unified Modeling Language (UML) a use case is defined as "a
set of sequences of actions a system performs that yield an observable
result of value to a particular actor.” An actor is a human agent. When
an AKMS is viewed functionally as an application, its users perform a
set of use cases supporting various tasks within the main activities of
the knowledge and KM processes of an NKMS. An AKMS doesn’t
automate all NKMS activities. Only some. Figure One shows the
abstract relationship of AKMS Use Cases to knowledge and KM

processes

Knowledge and Knowledge Management Processes

Process
Activities

IT Use Cases
support only some of
the Processes and
Activities

Use Case One Use Case Two

Figure One -- Relationships of KM Processes and
Activities to AKMS Use Cases

3

Architectural Overview

If use cases specify the functional or activity aspect of the AKMS, the
objects and components of the AKMS that support these use cases,
and their interrelationships, provide its structure. We can begin to
understand AKMS structure by visualizing a basic, abstract
architecture. That architecture is expressed in Figure Two.

Any Client
A
P & & & .-
Bus

Artificial Knowledge M anager

Pr ocess Control Services

Active In-Memory Object Model
Connectivity Services

Appﬁzztion ﬁ ﬁ ﬁ ﬁ

Server Any Data Store
Figure Two -- KMCI AKMS "Straw Man" Architecture

The figure shows clients, application servers, communication buses and
data stores integrated through a single logical component called an
Artificial Knowledge Manager (AKM). The AKM performs its central
integrative functions by providing process control and distribution
services, an Active, In-memory Object Model supplemented by a
persistent object store, and Connectivity Services to provide for passing
data, information, and knowledge from one component to another. | will
specify the AKM in much more detail below. For now a more concrete
visual picture showing the variety of component types in the AKMS, is
given in figure Three.

Cliemt "n|'l|'liil. ations

ERPCGLUT

Legacy ' “ ‘ ’ » ‘ ‘ FRP

ARM GILUI

Browsers Reporting

' Web Chuers '
\ppli : L ppli-
I ul CTs i
cation ' e ' cation
Servers ' KDD BIPF ' BETVEls
' L TMI Data Stores ROLAP '

I -
s II-- ‘ ' Persistent
‘ l Object SMaore

[data
AL :
PR Ons

Figure Three -- The AKM, Data Stores,
Applications Servers and Clients

An important difference between the two figures is that the
communications bus aspect of the AKMS is implicit in figure Three,
where I've assumed that the AKM incorporates it. Figure Three makes
clear the diversity of component types in the AKMS. It is because of this
diversity and its rapid rate of growth in the last few years that the AKM
IS necessary.

Change in the AKMS can be introduced through so many sources that if
the AKMS is to adapt to change it needs an integrative component like
the AKM to play the major role in its integration and adaptation.

The Key Architectural Components of the AKMS are:
= The Artificial Knowledge Manager (AKM)
= Stateless Application Servers
= Application Servers that maintain State
= Object/Data Stores
= Object Request Brokers (e.g., CORBA, DCOM)
= Client Application Components

More detail on these follows.

The AKM [7]

An AKM provides Process Control Services, an Object Model of the
Artificial Knowledge Management System (AKMS) (the system
corresponding to the AKMS architecture), and connectivity to all
enterprise information, data stores, and applications

Process Control Services include:

B In -memory proactive object state management
and synchronization across distributed objects
and through intelligent agents;

B Component management and Workflow
Management through intelligent agents

B Transactional multithreading;
B Dbusiness rule management and processing; and
B metadata management.

An In-memory Active Object Model/Persistent Object Store is
characterized by:

B Event-driven behavior;
B AKMS-wide model with shared representation;
B Declarative business rules;
B Caching along with partial instantiation of
objects;
B A Persistent Object Store for the AKM,;
B Reflexive Objects.
Connectivity Services should have:
B Language APIs: C, C++, Java, CORBA, COM;

B Databases: Relational, ODBC, OODBMS,
hierarchical, network, flat file, etc.;

B Wrapper connectivity for application software:
custom, CORBA, or COM-based; and

B Applications connectivity including all the
categories mentioned in Figure Three above,

6

whether these are mainframe, server, or desktop
- based.

In the following paragraphs, I'll expand on Process Control Services
and the Active Object Model.

Process Control Services
Object Management and Synchronization

The AKMS supports a variety of data stores and application servers
that allow batch, transaction, and DSS processing to occur in the same
system. The result of this diversity of processing activities is to
introduce frequent and rapid changes into the AKMS, its data stores,
and its application servers. Change in data, methods (including
business rules), and behavior is the "law of life" in the AKMS.

The problem of managing, synchronizing and adapting to these
changes in the AKMS is the Dynamic Integration Problem (DIP). A
primary function of the AKMS, and its AKM integrative component, is to
automate Dynamic Integration (DI) as much as practicable. To perform
dynamic integration, the AKM must:

B look for changes in shared objects and additions to the total
pool of objects and relationships,

B alert all system components sharing the objects of such
changes, and also

B make decisions about which changes should be implemented
in each affected component throughout the system.

The AKM accomplishes these tasks by using its in-memory, shared,
active object model with its support for event-driven behavior, a
common view of the system’s objects, declarative business rules, and
caching of data along with use of partial instantiation of objects.

In addition, the AKM relies on a persistent representation of the object
model. The objects in the object model are reflexive -- aware of their
present state and any change of state [8].

The AKM accomplishes proactive monitoring and coordinating of
changes in its shared objects through their reflexivity and capacity for
event-driven behavior, and through software agents. The capacity for
event-driven behavior causes the objects to adjust in response to
event-induced changes in some shared objects by making
corresponding changes in themselves. A particular type of AKM event-
driven object that is also autonomous is a software agent.

7

Agents can play a major role in performing dynamic integration as part
of the AKM. When a change is introduced in an AKM object, the object
communicates the change (through an alert) to a central object model
within the AKM. The central object model contains a view of all objects
and relationships in the AKMS. The central object model will respond to
this alert by incorporating the changes into the central object model and
deleting the old versions of the objects, as long as no other object
models share the old object versions. If they do, the central object
model will dispatch Negotiator mobile agents to the various distributed
objects incorporating old object versions.

The task of these Negotiator Mobile Agents is to negotiate with the
effected distributed object sub-models about whether the changed
objects are acceptable to them. The distributed object sub-models can
employ Static Agents to negotiate for them. If the changed objects are
acceptable, the old versions of the objects can be deleted from all
object sub-models, and the new objects can be incorporated into all
distributed object sub-models. If not, the central object model will
maintain both the old and the changed objects to accommodate
disagreements among the distributed applications.

Both the mobile and the static agents involved in the mutual
coordination process will need some intelligence. That is, they will
exhibit cognitions, evaluations, and goals, will make decisions, and
perhaps should have the capacity to learn from previous negotiations
with other agents.

Why are negotiator agents desirable in performing dynamic integration?
While dynamic integration can be performed without negotiator agents,
the advantage in using them comes from better performance. Without
negotiator agents all of the transactions in negotiations between central
and local components of the AKM would flow over the enterprise
network. With them, only the agents are sent from the central AKM
component to other components. Negotiations actually occur on the
target rather than the source platform. When the agent returns to the
central AKM component, it brings back only the result of the
negotiation.

Component Management and Synchronization

Like objects, components can also be shared across applications and
physical platforms. And they also change frequently and rapidly and
require DI. Component management is the ability to monitor, co-
ordinate, and synchronize changes in components, and is analogous to
object state management. It too, needs to be performed in real-time,
and it too requires proactive, in-memory operation to be most effective.

8

Component Management and Synchronization in the AKM requires
much the same set of capabilities as object state management and
synchronization, and can benefit from the use of software agents..

Work Flow Management

The AKMS supports business processes by assisting efforts to gather,
organize, create, maintain, and enhance knowledge about them, and
also by providing support for planning, implementing, monitoring, and
evaluating the course of the business process. Both use cases and
work flows are task sequences within these activities that process,
route, and distribute information products, but the connotations of the
two terms are somewhat different. The use case concept looks at a task
sequence from the point of view of the valued outcome the user will get
from a task sequence. Work flow, on the other hand, refers to the
automated sequence constructed to implement a use case, a part of a
use case, or a set of related use cases. AKM process control services
must provide the means to manage such work flows by:

1. facilitating specification of routing and distribution of data,
information, and knowledge;

2. supporting rapid and easy change in the routing structure,
the distribution process, and the business rules governing
the work flow;

3. providing the capability to either store the product of a work
flow task or "push” it to the next step in the work flow;

4. providing the capability to distribute the work flow process
across multiple computers;

5. providing the capability to gather knowledge resources to
support the work flow;

6. supporting collaborative transactions among work flow
participants;

7. providing the capability to simulate the work flow; and

8. providing the capability to customize work flows by
integrating custom, legacy, or external data and/or
applications.

While the AKM in its role as a static business process engine can easily
support areas one and two in the above list, AKM agents may also be
applied in work flow process control areas 3-8.

Area 3: In deciding whether to store the product of a work flow task or
push it to the next step, negotiator agents of the components
performing the steps can exchange information on the depth of their
work queues; and on their relative abilities to store and process the next
step in the work flow. Together they can decide on whether the work
flow item in question will be stored or "pushed." In case of
disagreement the central AKM component can arbitrate.

Area 4. Agents based at each component, can also increase the
capability to distribute the work flow process by continuously monitoring
their components and alerting the central AKM component if processing
capability is stressed [9]. The central AKM agent can then assist the
"local" agents in negotiations to distribute the work load.

Area 5. Knowledge Retrieval agents, next, can help in providing the
capability to gather knowledge resources to support a work flow. Such
agents can model [10] each individual information or knowledge
resource within the DKMS. They can then collaborate with Interface
agents, receiving queries from them and transmitting only the results to
the interface agents. Various types of knowledge may be retrieved by
such agents including descriptive, impact-related, predictive, outcome
assessment, and benefit/cost assessment knowledge.

Area 6: Intelligent Interface agents can support collaborative work flow
activity in useful ways. For example, in planning, a number of decision
makers may have to agree on a hierarchy of goals and objectives, and
ultimately on a planning option. Interface agents can help planners to
be explicit about the goals, objectives and priorities that comprise their
planning hierarchies. Then negotiating agents for different planners can
work together to analyze the similarities and differences in planning
hierarchies and to negotiate a common planning hierarchy.

Interface agents and negotiating agents can also be important in
developing concrete planning options incorporating planning hierarchies
and action effect scenarios into plans. Planners will differ not only in
their planning hierarchies, but also in their cognitive maps relating
actions and effects. Again, interface agents can help planners be
explicit about their cognitive maps, and negotiating agents can work
together to arrive at a common cognitive map underlying a preferred
planning option.

In addition to supporting planning, interface and negotiating agents can
support collaborative work in Knowledge Discovery in Databases (KDD)
activity [11]. Here analysts will disagree on both cognitive maps
expressed in formal models, and on validation criteria used to select
among models. Interface agents can help analysts to perform formal

10

modeling, they can also help them in formulating their validation
schema supporting model choice. Negotiating agents can then assist
analysts in arriving at common validation schema.

Area 7: Agents can also assist in simulating work flow systems.
Systems can be represented by agents functioning as the nodes of a
work flow. Agents can be assigned tasks they perform according to
rules programmed in the agents and triggered by events and their
parameters. Work flow items can be defined to provide agents
something to process. When the simulation is run various
characteristics of the work flow design can be evaluated.

Area 8. Agents provide only one way to integrate custom, legacy, or
external data and applications into a work flow system. But agent
technology can be used to produce a simple information agent by
"wrapping" any information source to allow it to conform to the
communication conventions of an agent infrastructure [12]. While this is
not so much a contribution to process control in itself, it does support
other agents in the AKMS infrastructure by facilitating communications
between such simple information agents and other more proactive
agents, and by providing a capability to script the onformation agents to
perform simple functions such as scheduled reporting and alerting of
other agents to important events reflected in the information source.

In addition to the above, the AKM supports management of work flows
composed of tasks performed by multiple application servers of diverse
processing type. For example, a collaborative planning work flow
application involving a planning business process engine and multiple
database servers can be integrated by an AKM. Another example is an
integrated database marketing workflow involving ETML, Operational
Data Store, DSS Database, Data Mining, Business Process Engine,
and Web Server components.

Transactional Multithreading

Transactional multi-threading is the ability to manage each thread within
a process as a separate transaction. Each thread can represent an
instance of an active object.

Because they support transactional multi-threading, AKMs provide for
multiple objects, belonging to different classes, to reside in the same
process. This form of multitasking allows for concurrent execution of
disparate business rules associated with different objects. It provides
the AKM with parallelism useful in work flow management as well as in
object and component DI.

Business Rule and Metadata Management and Processing
11

Business Rule and Metadata Management and Processing are both
derivative services of Object and Component Management and
Synchronization. Business Rules are encapsulated in objects and
components as methods, while metadata is encapsulated as attributes.
So part of what we mean when we refer to object and component state
management and synchronization is management and processing of
business rules and metadata.

In-Memory Active Object Model/Persistent Object Store

The AKM provides an Active Object Model. It is distributed. Much of it is
shared across physical platforms. And it can be either persistent or
resident in-memory

Event-Driven Behavior

Object methods in the Active Object Model are triggered by (1) events,
(2) agents, and /or (3) programmed periodic activation. Events include
user inputs, changes in object attribute values, changes in attributes
themselves, or changes in methods themselves.

Events can trigger agent behavior, which then follows an autonomous
course in implementing adjustments. Event-driven behavior is
implemented in the AKMS through sequences of rules having
antecedents and consequents.

AKMS-wide Model With Shared Representation

Many of the objects in the AKM are shared across distributed physical
platforms -- either data stores, or application servers. In fact, the AKM
may be viewed as a special distributed application server or business
process engine that maintains state, shares a set of reflexive objects
across physical platforms, and manages and integrates multiple
processes changing these shared objects. It is this sharing of objects
and components across platforms that creates a common view of the
AKM and its metadata. Figure Four illustrates the role of Shared
Objects in the AKM and in DI.

Declarative Business Rules

Both declarative and procedural business rule networks are supported
as methods in classes and objects of the AKM model. Declarative Rule
networks are those whose rules fire in parallel to determine an
outcome. Procedural Rule networks are those whose rules fire in
sequence. Figure Five lllustrates declarative and procedural rule
networks.

12

Communications.

Change Alerts,
Nesotiations,
Ldjustments

N\

ARM Server
with Object
Maodel

Data II

Mari

Data
Warehouse

Dy namic
Data Store

Figure Four -- A Distributed AKM, Shared Objects and Dynamic
Integration

Procedural Rule Network
y 4

If XisAthenZ isW,

If XisBthenZ isW,

Transformation
Rule

Combination

If XisCthenZ isW, o
ule

If XisDthenZ isW,

If X iSE then Z isW,

Declar ative Rule Networ k

Figure Five -- Declarative and Procedural Rule Networks

Event-driven behavior in the AKM is frequently determined by
sequences of declarative rules or rule networks constituting procedural
rule networks. Agent-driven behavior is triggered by events but then is

13

determined by the agent’s autonomous program.
Partial Instantiation of Objects

The ability to perform partial instantiation of objects is particularly
important to the AKM in allowing it to develop rapid query performance.
In partial instantiation only those attributes called for in a query, and
only those records specified are brought into the in-memory object
model. In this way, the data entering the AKM from data stores in the
AKMS can be "chunked," and the amount of data that the AKM must
handle can be minimized.

As a result, it is much more likely that the difficult processing involved in
any query can be done in the AKM's "virtual database" in-memory.
Figure Six illustrates partial instantiation of objects by an AKM.

AKM with Object Model

Query

Import
Imports only those
daitributes necessary
to answer the gquery and

L pdate

only those objects that
can fit in memaory

Any Data Store

Figure Six -- The AKM and Partial Instantiation
The Persistent Object Store

The AKM uses either a relational database or an OODBMS to store the
Active Object Model in persistent form. In either case the Active Logical
Object Model must be mapped to the physical data model of the
database. The mapping is straightforward in case of an OODBMS,
because the structure of the active object model matches the structure
of the database. There is no "impedance mismatch,” because there is
no need to unwrap the logical objects and map their attributes onto
physical table columns. This is the case with an RDBMS. And if one is
used for persistent storage of the object model a performance penalty is
paid.

14

Reflexive Objects

AKMs use reflexive objects. Objects are reflexive if they are aware of
their present state and any change of state. In this way they are like
human agents in Natural Knowledge Management and other business
processes. When combined with event-driven behavior reflexive objects
provide the foundation for automatic propagation of events and
changes in state among themselves.

Software Agents

A Software Agent (SA) is an object that acts on behalf of another object
(its client) and behaves to at least some degree: autonomously (without
continuous direction), socially (interacts with other agents), proactively
(influences its environment), and reactively (is influenced by its
environment). [13] An intelligent software agent is an SA that: has an in-
memory knowledge base including cognitions, evaluations, goals, and
perhaps even affects [14]; is rational in the sense that it makes
decisions, acts to attain its goals; and learns.

A static SA is one that does not move from the platform that creates it.
A Mobile SA [15] can move across a network from one physical
computer to another. It can do this autonomously, as it perceives the
need for such movement. It takes its run-time environment with it
wherever it goes. It can stop program execution on one computer,
move to another computer and then begin again at the second
computer, interacting with that computer to communicate and/or gather
data, information, or knowledge.

The "source computer” of a mobile SA is its home agency. [16] The
agency consists of a computing environment, an agent scripting
capability, and a database. The AKM is a home agency for mobile
agents. And may, in itself be viewed as a static agent as well as a
business process engine (see below).

Contrast the mobile SA concept with the original client/server model. In
the client/server model, a single request is sent over a network and
activates a computing procedure at the destination computer. A result is
then sent across the network to the client. In contrast, a mobile SA
travels to a server and then may perform a variety of transactions with
it. Eventually, when its business with the destination computer is done,
it either returns to the source computer with the results of its
transactions, or moves to another destination computer to transact still
more business.

Mobile SAs register with home agencies. They also register as visitors
with other agencies. Some Mobile SAs are Broker Agents. They recruit

15

other agents to create task forces and delegate work to the agents they
recruit. They can also contract with other agents as part of the
recruitment process.

Mobile SAs and their agencies require a host environment in order to
execute. This is a distributed computing environment overlaying a host
distributed computing environment. It provides various essential
services to mobile SAs, including the ability to create them, and the
ability to execute. [17] This environment is the AKM. And, in a larger
sense, the AKMS.

Application Servers

The development of multi-tier distributed processing systems was
characterized by the appearance of application servers. Application
servers provide services to other components in a distributed
processing system by executing business logic and data logic on data
accessed from database servers.

The class of application servers is sub-divided by Rymer's [18]
distinction between "stateless" and in-memory server environments.
Application Servers with Active in-memory Object Models he calls
Business Process Engines (BPEs), a name similar to Vaskevitch's [19]
Business Process Automation Engines.

Stateless Application Servers

According to Rymer: "Business state is the information that describes
the momentary status of the organization. To create business state,
most applications acquire data from a database and then load it into
memory for manipulations by the user." [20] This is the "stateless"
approach because, in it, a back-end database, rather than internal
memory, manages state.

Among stateless application servers Rymer distinguishes:

B Web Information Servers (they provide access to
databases from web browsers)

B Component Servers (they "provide data access and
interaction frameworks for software components"); and

B Transaction Processing Monitors (they coordinate
transactions within a distributed system).

Business Process Engines: Application Servers that Maintain
State

16

"Business Process Engines manage the most important business state
both in a fast in-memory environment and in close coordination with
back-end databases." [21] Because of their in-memory maintenance of
state, BPEs process many user requests without help from a database.
In addition, they specialize in complex business rule processing,
because their ability to maintain state is a special advantage in
performing such processing.

KM software applications such as KDD/data mining servers, publication
and delivery servers, the AKM itself, and many other server types are
all BPEs. The job of the AKMS is to integrate the burgeoning list of
BPEs into an enterprise wide system.

Therefore, an important aspect of specifying the AKMS is specifying the
current universe of application servers and projecting the appearance of
new types. Here are some criteria for defining types of Business
Process Engines:

B whether they are distributed across physical
components or not;

B whether a BPE application server deals with a single or
multiple business processes; and

B the business process the BPE supports.

Distributed BPEs can be a powerful tool for upgrading performance in
AKMSs, as well as for integrating their various components. An AKM is
just a BPE that is both distributed and encompasses all of an AKMS's
processes. A multi-process BPE can fall short of being an AKM, and
instead can be restricted to a cluster of related processes. So, there are
at least three types suggested by this criterion: a single process BPE, a
BPE cluster, and an AKM.

How well a multi-process BPE performs will be correlated to the extent
of its distribution, and to the complexity of the process it must support.
But holding complexity constant, single process, non- distributed BPEs
will generally perform better than multi-process non-distributed BPEs.
So, multi-process BPEs will generally be distributed BPEs.

The third criterion for classifying BPEs is the business process
supported. Here is an incomplete classification of BPE application
servers based on knowledge, KM and Data Warehousing sub-
processes. Collaborative Planning; Extraction, Transformation, and
Loading (ETL); Knowledge Discovery in Databases (KDD); Knowledge
base/object/component model maintenance and change management
(The AKM); Knowledge Publication and Delivery (KPD); Computer-

17

Based Training (CBT); Report Production and Delivery (RPD); ROLAP;
Operational Data Store (ODS) Application Server; Forecasting/
Simulation Server; ERP servers, Financial Risk Management,
Telecommunications Service Provisioning, Transportation Scheduling,
Stock Trading Servers, Work Flow servers.

Object/Data Stores

There are few, if any, limits on the types of object/data stores in the
AKMS. These data stores incorporate objects, components, or their
attributes in a non-volatile persistent form.

Legacy data, flat files, Relational Data Bases, Object Relational Data
Bases, OODBMSs, multidimensional data stores, and vertical
technology databases all fit within the AKMS.

In addition, the AKMS must also integrate Image, Text, Report, Video,
Audio, and File Document Types. That is, it is the job of the AKMS to
develop and maintain connectivity to various data stores, and not
simply DBMSs.

Object Request Brokers

ORBs provide an intermediate layer between clients and servers in a
distributed network. The ORB receives requests from clients and
selects servers to satisfy the requests. The ORB can activate
appropriate servers. The ORB can translate data between clients and
servers. Generally, ORB servers are stateless and therefore are not
BPEs (though this is not a necessary consequence of ORB
specifications).

The AKM must support CORBA and DCOM ORBs to fulfill its
integrative function. That is, it must be able to act as both CORBA and
DCOM Servers and Clients. In this way, the AKM, with its greater
integrative functionality, is built "on top of" an ORB standard.

The Unified Knowledge Language (UKL)

The KMCI is currently developing a standard on the Unified Knowledge
Language (UKL). This standard will specify a contextually rich language
that can represent and transmit knowledge from one software program
or device to another. The language will consist of syntax, rules, and
format. The specification will contain a message structure for the
transmission of knowledge via the Artificial Knowledge Manager. So, as
time goes on the AKMSC will need to coordinate with the UKL
Committee in refining our standard.

18

AKMS Use Cases

When an AKMS is viewed functionally as an application, it performs a
set of use cases supporting various tasks within the main activities of
the knowledge and KM processes of an enterprise. The Kn processes
of an enterprise are:

B Knowledge Production;
B Knowledge Acquisition;
B Knowledge Transmission.
The KM processes are [22]:
B Representing KM
Leading KM
KM Knowledge Production
KM Knowledge Acquisition
KM Knowledge Transmission
Changing Knowledge Process Rules

Handling Crises in Knowledge Processes

Allocating KM Resources and mandating
implementation for Various Knowledge and KM
Process activities

B Negotiating KM with business process
representatives

Here are three side-by-side lists (See Table One): a list of knowledge
processes, one of associated Kn and KM activities, and a list of AKMS
use cases that might be implemented in a comprehensive KM
enterprise wide application. These also illustrate the point of partial
support of the activities and the processes by the AKMS use cases.
This list is intended as a start toward specifying AKMS use cases. The
AKMSC can work over the list, and develop use case descriptions and
an appropriate use case model. These products can provide a
standardized view of the AKMS that we can then match against its
component model to validate it.

Table One Kn and KM Processes and AKMS Use Cases

19

AKMS

Knowledge & Activities Within Use Cases

KM Processes Processes

Knowledge

Production _ o) _ _
Searching (within the enterprise - Perform cataloging, and tracking of
for data, information, or previously acquired enterprise data,
knowledge) information, and knowledge bases

related to business processes

Receiving (transmitted data,

information, or knowledge) o _
Receiving transmitted data,

information, or knowledge through e-
mail, automated alerts, and data,
information, and knowledge base

updates
Storing (and loading data, - Storing the outcomes of searching,
information and knowledge) receiving, and other knowledge

production activities into a data,
information or knowledge store
accessible through electronic queries

Retrieving (data, information or - Retrieve through computer-based
knowledge) querying data, information, and
knowledge of the following types:
Planning
Descriptive

Cause-effect
Predictive and time-series forecasting

Assessment

Formulating new knowledge - Prepare data, information, and

20

claims

knowledge for analytical modeling

Perform Modeling including revising,
reformulating, and formulating models

Testing knowledge models and
claims

Testing competing knowledge models
and claims using appropriate analytical
techniques, data, and validation criteria

Concluding (about knowledge
models and claims)

Assessing test results and comparing
(rating) competing knowledge models
and claims

Using Previously available
Knowledge

Knowledge
Acquisition

Searching (for data, information,
or claimed knowledge external
to the enterprise)

Perform cataloging, and tracking of
external data, information, and
knowledge bases related to enterprise
business processes

Gathering (externally located
data, information or claimed
knowledge)

Order data, information, or external
claimed knowledge and have it shipped
from external source

Purchasing (data, information,
or claimed knowledge)

Purchase data, information, or external
claimed knowledge

Filtering (including cleaning,
transforming and staging data,
information, or knowledge
claims)

Extract, Reformat, Scrub, Transform,
Stage, and Load, data, information, and
knowledge claims acquired from
external sources

21

Testing knowledge models and
claims from external sources

Testing competing knowledge models
and claims using appropriate analytical
techniques, data, and validation criteria

Concluding (about knowledge
models and claims from
external sources)

Assessing test results and comparing
(rating) competing knowledge models
and claims

Storing (and loading data,
information, and knowledge)

Storing the outcomes of Filtering,
Concluding, and other knowledge
production activities into a data,
information or knowledge store
accessible through electronic queries

Using Previously available
Knowledge

Knowledge
Transmission

"Pushing," data, information and
knowledge

Publish, disseminate data, information,
and Knowledge using the enterprise
intranet

Update all data, information, and
knowledge stores to maintain
consistency with changes introduced
into the AKMS

Sharing knowledge (by making
it available)

Load data, information, or knowledge
and updates into enterprise stores and
provide access to enterprise query and
reporting tools

Searching/retrieving data,
information, and knowledge
using an electronic network

Search/retrieve from enterprise stores
through computer-based querying,
data, information, and knowledge of the
following types:

22

Planning

Descriptive

Cause-effect

Predictive and time-series forecasting

Assessment

Searching/retrieving data,
information, and knowledge
using personal networks

Use e-mail to request assistance from
personal networks

Face-to-face knowledge
transmission within small
groups

Face-to-face knowledge
transmission in formal training
and education

Present knowledge using computer-
aided displays

Storing (and loading data,
information, and knowledge)

Storing the outcomes of knowledge
transmission activities into a data,
information or knowledge store
accessible through electronic queries

Using Previously available
Knowledge

Representing

Signing Contracts

23

(at
ceremonies)

Attending Public Functions for
KM

Meeting and relating to
dignitaries

Leadership

Hiring KM Staff

Identify Knowledge Management
responsibilities based on some
segmentation or decomposition of the
KM Process

Retrieve available qualification
information on knowledge management
candidates for appointment

Evaluate available candidates
according to rules relating qualifications
to predicted performance

Communicate Appointments to
Knowledge Management constituency

Providing for KM Staff Training

Plan or select training program(s)

Purchase or create training vehicles
and materials (seminars, CBT products,
manuals,etc.)

Motivating KM Staff

Plan and Schedule motivational events

Monitoring KM Staff

Querying and Reporting using data,
information, and knowledge about:

24

KM staff plans
KM staff performance description

KM staff performance cause/effect
analysis

KM staff performance prediction and
forecasting

Evaluating KM Staff

Querying and Reporting using data,
information, and knowledge about
assessing KM staff performance in
terms of costs and benefits

Building relationships with
individuals and organizations
external to the enterprise

Communicate with external individuals
through e-mail and online conferencing
technology

KM

Knowledge o

Production Activities are the same as those AKMS use cases are analogous
specified for Knowledge
Production

KM

Knowledge .

Acquisition Activities are the same as those AKMS use cases are analogous
specified for Knowledge
Acquisition

KM

Knowledge

Transmission

Activities are the same as those
specified for Knowledge
Transmission

AKMS use cases are analogous

Changing
Knowledge

Process
Rules

Deciding to change Knowledge
Process Rules

Search/retrieve from enterprise stores
through computer-based querying,
data, information, and knowledge of the
following types about knowledge
process rules:

25

Planning

Descriptive

Cause-effect

Predictive and time-series forecasting

Assessment

Directing use of KM Knowledge
Transmission to transmit new
rules and mandate for using
them

Communicate directives through e-mail

Crisis
Handling

Various activities associated
with other processes
implemented in a "time box"
mode

Uses AKMS use cases associated with
those activities

Forecasting developing crises
or crisis potential

Search/retrieve from enterprise stores
through computer-based querying and
reporting, data, information, and
knowledge of the following types about
crisis potential:

Cause-effect, and

Predictive and time-series forecasting

Monitoring developing crises

Search/retrieve from enterprise stores
through computer-based querying,
data, information, and knowledge of the
following types about crisis potential:

Descriptive

Cause-effect

26

Evaluating developing crises

Search/retrieve from enterprise stores
through computer-based querying,
data, information, and knowledge about
crisis potential of the following types:

Descriptive
Cause-effect
Predictive and time-series forecasting

Assessment

Contingency Planning for crisis

Search/retrieve from enterprise stores
through computer-based querying,
data, information, and knowledge of the
following types about crisis potential:

Planning

Descriptive

Cause-effect

Predictive and time-series forecasting

Assessment

Evaluating crisis contingency
plans against crisis
management performance

Search/retrieve from enterprise stores
through computer-based querying,
data, information, and knowledge of the
following types about crisis potential:

Planning

Descriptive

Cause-effect

Predictive and time-series forecasting

Assessment

27

Allocating KM
Resources
and
mandating
implementa-
tion for:

KM infrastructure

Specify (either alone or using a work
group) and compare alternative KM
infrastructure options in terms of
anticipated costs and benefits

Communicate directives through e-mail

Training

Specify (either alone or using a work
group) and compare alternative KM
training options in terms of anticipated
costs and benefits

Communicate directives through e-mail

Professional Conferences

Specify (either alone or using a work
group) and compare alternative KM
professional conference options in
terms of anticipated costs and benefits

Communicate directives through e-mail

Compensation for KM staff

Specify (either alone or using a work
group) and compare alternative KM
compensation options in terms of
anticipated costs and benefits

Communicate directives through e-mail

Funds for new KM programs

Specify (either alone or using a work
group) and compare alternative KM
budget options in terms of anticipated
costs and benefits

Communicate directives through e-mail

Negotiating
with business

Specify (either alone or using a work
group) and compare alternative KM

28

process
representa-
tives about:

Levels of effort for KM

level of effort options in terms of
anticipated costs and benefits

Communicate options, proposals, and
responses through e-mail and online
conferencing and collaboration
application

The scope and content of KM
programs

Specify (either alone or using a work
group) and compare alternative KM
scope and content options in terms of
anticipated costs and benefits

Communicate options, proposals, and
responses through e-mail and online
conferencing and collaboration
application

KM ROI targets

Specify (either alone or using a work
group) and compare alternative KM
ROI targeting options in terms of
anticipated costs and benefits

Communicate options, proposals, and
responses through e-mail and online
conferencing and collaboration
application

KM infrastructure support for
business processes

Specify (either alone or using a work
group) and compare alternative KM
infrastructure support options in terms
of anticipated costs and benefits

Communicate options, proposals, and
responses through e-mail and online
conferencing and collaboration
application

KM staff support for business
processes

Specify (either alone or using a work
group) and compare alternative KM
staff support options in terms of
anticipated costs and benefits

29

Communicate options, proposals, and
responses through e-mail and online
conferencing and collaboration
application

Conclusion: AKMS Committee Sessions and Program

| intend that this working paper be used a starting point for the AKMSC.
That means the committee could junk the framework of the paper in
favor of some alternative, modify it substantially, or perhaps use it as a
foundation, and flesh out a more complete and precise picture. We can
start the process at the standards committee facilitated AKMSC
sessions on the AKM standard and Artificial Knowledge Base
Management Systems on January 29, 1999.

Figures Two and Three above, suggest a basic "straw man" program
for specifying the AKMS and the AKM Standard. It is as follows:

1. Specify AKMS Use Case Model and Relate to NKMS
Processes and Activities

2. Specify the Atrtificial Knowledge Manager (AKM) Logical
Component

3. Specify Types of Client Application Components.
4. Specify Types of Application Servers

o

Specify Communication Buses including Object
Request Brokers (ORBS)

6. Specify Types of Data Stores

7. Specify AKMS Architectural Model

8. Specify AKMS Model

9. Specify Artificial Knowledge Manager Standard
10. Specify Knowledge Warehouse Standard

Clearly, there's an appreciable amount of work associated with these
specification tasks. We can begin work at the January 29 meeting, first
considering whether to retain, modify, or reinvent the straw man
program. Then we can divide into subcommittees according to our
interests and specialization in order to do the work over the longer term.

30

References

[1] Compare Edward Swanstrom, "What is Knowledge Management?"
Discussion Rough Draft, 1998.

[2] John H. Holland, Hidden Order (Reading, Mass.: Addison-Wesley,
1995)

[3] John H. Holland, Emergence (Reading, Mass.: Addison-Wesley,
1998)

[4] M. Mitchell Waldrop, Complexity (New York: Simon and Schuster,
1992)

[5] See Joseph M. Firestone, "Distributed Knowledge Management
Systems and Enterprise Knowledge Management Modeling," at
http://www.dkms.com/White Papers.htm.

[6] The AKMS concept developed here is largely based on the DKMS
concept | introduced in "Object-Oriented Data Warehousing," available
at http://www.dkms.com/White Papers.htm. Other papers developing
various aspects of the DKMS are: Joseph M. Firestone, "Distributed
Knowledge Management Systems: The Next Wave in DSS," Joseph M.
Firestone,"Architectural Evolution in Data Warehousing," Joseph M.
Firestone, "Knowledge Management Metrics Development: A Technical
Approach,” Joseph M. Firestone, "DKMS Brief No. Four: Business
Process Engines in Distributed Knowledge Management Systems," all
are available at http://www.dkms.com/White Papers.htm, as are
additional papers about the DKMS.

[7] The ideas for the AKM owe much to the following White Papers.
Template Software, "Integration Solutions for the Real-Time Enterprise:
EIT - Enterprise Integration Template," Dulles, VA, White Paper May 8,
1998. See also http://www.template.com. Persistence Software, "The
PowerTier Server: A Technical Overview" at
http://www.persistence.com/products/tech_overview.html, and John
Rymer, "Business Process Engines, A New Category of Server
Software, Will Burst the Barriers in Distributed Application Performance
Engines,"” Emeryville, CA, Upstream Consulting White Paper, April 7,
1998 at http://www.persistence.com/products/wp_rymer.html.

[8] Reflexive objects are used in Template Software Enterprise
Integration Template and DAMAN Consulting's InfoManager products.
See Template Software, "Integration Solutions for the Real-Time
Enterprise: EIT - Enterprise Integration Template," Dulles, VA, White
Paper May 8, 1998, P. 17 at http://www.template.com. DAMAN is at
http://www.damanconsulting.com.

31

[9] Both the Enterprise Integration Template and InfoManager, provide
a distributed object model as well as process control and connectivity
services useful in developing a distributed AKM. See Ibid.

[10] Information Retrieval Agents similar to what I've called knowledge
retrieval agents are conceptualized in Jeffrey M. Bradshaw (ed.),
Software Agents (Cambridge, MA: AAAI Press/M.L.T. Press, 1998),
Pp.11-12. I've relied on this development in my treatment.

[11] The Perform KDD use case is described in detail in my "Knowledge
Management Metrics Development: A Technical Approach,” at
http://www.dkms.com/White Papers.htm.

[12] See Bradshaw (ed.), Software Agents . . . P. 31.

[13] There's a very sizable literature dealing with the definition and
conceptualization of software agents. Here I've relied on Elizabeth A.
Kendall, Margaret T. Malkoun and Chong Jiang, "A Methodology for
Developing Agent Based Systems for Enterprise Integration, Royal
Melbourne Institute of Technology, available at:
http://www.cse.rmit.edu.au/~rdsek/, and Shaw Green, Leon Hurst,
Brenda Nangle, Dr. Padraig Cunningham, Fergal Summers, and Dr.
Richard Evans, "Software Agents: A Review," Trinity College, Dublin,
and Broadcom Eirann Research Ltd., May 27, 1997, available at:

[14] See Rosalind W. Picard, Affective Computing (Cambridge, Mass.:
MIT Press, 1997).

[15] See Robert Orfali, Dan Harkey and Jeri Edwards, The Essential
Distributed Objects Survival Guide (New York: John Wiley & Sons,
1998) Pp. 255-256, and 401-405

[16] Ibid.

[17] Bradshaw (ed.). "Software Agents . . ." Pp. 26-27

[18] John Rymer, "Business Process Engines, A New Category of
Server Software, Will Burst the Barriers in Distributed Application
Performance Engines,” Emeryville, CA, Upstream Consulting White
Paper, April 7, 1998, P. 1, at
http://www.persistence.com/products/wp_rymer.htm.

[19] David Vaskevitch, Client/Server Strategies (San Mateo, CA: IDG
Books, 1993) Ch. 8.

[20] Rymer . . ., P. 1.
[21] Ibid. P. 9.

32

[22] I've discussed both Kn and KM processes in " Distributed
Knowledge Management Systems and Enterprise Knowledge
Management Modeling," available at
http://www.dkms.com/EKMDKMS.html.

Biography

Joseph M. Firestone, Ph.D. is an Information Technology consultant working in the
areas of Decision Support (especially Enterprise Knowledge Portals, Data
Warehouses/Data Marts, and Data Mining), and Knowledge Management. He is
consulting in the areas of developing Enterprise Information/Knowledge Portal Products,
and is the author of "Approaching Enterprise Information Portals," a comprehensive,
full-length industry report on this rapidly emerging field. In addition, he formulated and is
promoting the concept of Distributed Knowledge Management Systems (DKMS) as an
organizing framework for software applications supporting Natural Knowledge
Management Systems. Dr. Firestone is Chief Scientist of Executive Information
Systems, Inc. (EIS), and one of the founding members of the Knowledge Management
Consortium, International. A sampling of his writings may be found at the EIS web site
at http://www.dkms.com, a site Dr. Firestone developed. The dkms.com web site is one
of the more popular sites in data warehousing and knowledge management, and has
now attained a run rate of more than 70,000 visits per year.

33

